Quantum Photonic Circuit
ثبت نشده
چکیده
One promising approach for scalable quantum computing is to use an alloptical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12]
منابع مشابه
The scalable integration of long-lived quantum memories into a photonic circuit
We demonstrate a photonic circuit with integrated long-lived quantum memories. Pre-selected quantum nodes diamond micro-waveguides containing single, stable, and negatively charged nitrogen vacancy centers are deterministically integrated into low-loss silicon nitride waveguides. Each quantum memory node efficiently couples into the single-mode waveguide (> 1 Mcps collected into the waveguide) ...
متن کاملPhotonic quantum computers and communication systems
Quantum information processors have been proposed to solve classically intractable or unsolvable problems in computing, sensing, and secure communication. There has been growing interest in photonic implementations of quantum processors as they offer relatively long coherence lengths, precise state manipulation, and efficient measurement. In this thesis, we first present experimental techniques...
متن کاملIntegrated Conditional Teleportation and Readout Circuit Based on a Photonic Crystal Single Chip
We demonstrate the design of an integrated conditional quantum teleportation circuit and a readout circuit using a two-dimensional photonic crystal single chip. Fabrication and testing of the proposed quantum circuit can be accomplished with current or near future semiconductor process technology and experimental techniques. The readout part of our device, which has potential for independent us...
متن کاملQuantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid su...
متن کاملHybrid teleportation via entangled coherent states in circuit quantum electrodynamics
We propose a deterministic scheme for teleporting an unknown qubit through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states brings a discretevariable unkn...
متن کاملHigh-fidelity quantum state evolution in imperfect photonic integrated circuits
fidelity quantum state evolution in imperfect photonic integrated circuits. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We propose and analyze the design of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016